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Abstract

Music genre classification has been an active research area in recent years,
with increasing amount of digital music data available. In this paper, we
compared nine different music genre classifiers and evaluated their
performance on a large and famous dataset of music tracks called FMA
(Free Music Archive). We applied various feature extraction techniques
and machine learning algorithms to classify music tracks into nine top-
genres. Our results showed that the performance of the classifiers varies
significantly depending on the machine learning algorithms used. We also
presented a comprehensive reflection on the results and proposed some
possible future improvements.

1. Introduction

Music genre classification is a challenging problem and has remained to be a hot topic in recent
years. The ability to automatically categorize large amounts of music tracks into different genres has
numerous practical applications, including music recommendation systems, playlist generation, music
search engines and music streaming services [1]. For instance, music recommendation systems like
Spotify and Pandora rely heavily on genre classification algorithms to suggest songs to users.
Additionally, music search engines like Shazam use genre classification to identify songs and provide
information on them [2]. Moreover, genre classification models can also be used in music analysis and
research, such as studying the evolution of musical genres over time [3]. Hence, a powerful machine
learning model for music genre classification is in great need.

Over the years, researchers have been trying various approaches to automate the music
classification process, ranging from traditional machine learning techniques [3] to more recent deep
learning methods [4][5].

In this paper, our team trained 9 classifiers which are SVM, Logistic Regression, K-NN, Naive
Bayes, Quadratic Discriminant Analysis, Random Forest, Multilayer perceptron, CatBoost and
XGBoost, and further compared their performance. We also discussed some insights and some
extrapolations based on the results.

2. Dataset

The dataset used is the Free Music Archive (FMA), a large, open-source music dataset published
in 2017 containing 106,574 music tracks from 16,341 artists and 14,854 albums, arranged in a
hierarchical taxonomy of 161 genres [6].

We mainly focus on four files, which are:



File name Description

tracks.csv Metadata about each track in the
dataset, such as the track ID, the
album, the artist, and the title. It
also includes information about
the license under which each
track is released, the duration,
and number of listens.
features.csv Various audio features extracted
from each track, such as tempo,
key, and spectral characteristics,
generated by the Marsyas
feature extraction library and are
stored as numerical values.
echonest.csv Additional metadata and
features, obtained by the Echo
Nest API, including features
such as danceability, energy,
and loudness, as well as
information about the popularity
and familiarity of each track.
genres.csv An excerpt of built-in genre
hierarchy, that is all 163 genres
with name and parent (top-level
genres).

In the genres.csv, the column “top level” indicates the top-level genres of a particular genre. In
our experiment, we only considered the 9 top-level genres to simplify the problem and save our time
and computational power.

id parent top_level title #tracks
38 None 38 Experimental 38,154
15 None 15 Electronic 34,413
12 None 12 Rock 32,923
1235 None 1235 Instrumental 14,938
25 12 12 Punk 9,261
89 25 12 Post-Punk 1,858
1 38 38 Avant-Garde 8,603

Fig.1 The file genres.csv storing the genre hierarchy

The figure below shows the statistics of all 16 top-genres existing in the genres file. However,
during the data preprocessing phase, we dropped some records hence some of the top-genres may have
very few instances, causing extreme imbalance in the dataset. Hence, we manually merged those top-
genres with very few records into a new group called “Other” so that finally we only considered 9 top-
genres (details see in 3.2.4).
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Fig.2 Statistics of the number of tracks in each top-level genre
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Fig.3 Our machine-learning pipeline
3.1 Data Reading

The tracks.csv, features.csv, and echonest.csv provided the training features while the genres.csv
provided a mapping between the sub-genre of a track and its top-genre. We further inner-joined the
three files containing the features so that only tracks that exist in all three files are retained,
reducing the dataset size to 13554.

3.2 Data Preprocessing

3.2.1 Dropping irrelevant features by domain knowledge

By analyzing all the training features, we found that some of the training features are totally
irrelevant to our genre classification problem, like the location of the artist. Including them may
downgrade the performance of our models and dramatically increase the time and computational
cost. Hence, we choose to drop all these irrelevant features by domain knowledge at the very first
stage of the data preprocessing. At the end of this step, we reduced the number of features from
806 to 776.



dropped = [“artist_location”, “tags”, “artist_url®, “artist_website®,
“license_image_file large”, “track url”, “license url”,
“license_title”, “license imaze file”, “track file”,
“track explicit”, “artist_name x”, “album title”,
“track_date_recorded”, “track_date_created”, “track_lyricist”,
“track_information”, “track_copyright c”, “track copyrisht_p”,
“artist_name_ v, “track explicit notes”, “track composer”,
“track publisher”, “album url”, “release”, “album name”,
“album date”, “album id”, “track imaze file”, “track languaze code”]

Fig.4 Dropping list of irrelevant features
3.2.2 Processing the string features

After dropping all irrelevant features, there were two features remaining to be in string
format that needed to be converted to numeric values before being fed to the machine learning
models, which were “track duration” and “track_title”.

For “track_duration”, which is in the format “xx:yy”, where xx is for minutes and yy is for
seconds, we just converted them to the number of seconds.

For “track_title”, the Word2Vec algorithm was used to convert the feature into numeric
values. Word2Vec algorithm is a commonly used neural network-based algorithm in natural
language processing to convert text data into numerical format. It can represent words as vectors,
where words with similar meanings are placed close to each other in a high-dimensional vector
space [7]. In our case, we used this algorithm to convert the track titles into numerical vectors,
which can be taken in by the models.

We first used Word2Vec to create feature vectors for each word that appears in the track
titles, which allowed us to capture the semantic meaning of each word in the track titles. Then, to
calculate the semantic meaning of each title, we used the mean value of the words in the title,
which was then used as a series of features in our machine learning models [8].

By using Word2Vec to convert track titles into vectors, we were able to improve the result of
our models, as it helped to capture the semantic meaning of the track titles, allowing the models
to better understand the underlying sentiment and emotional tone of the songs. This approach
proved to be effective in our analysis, as it allowed us to accurately predict the sentiment of each
track based on the track’s title.

After this step, the number of features increased to 874.
3.2.3 Fill in empty values and normalize the data

We used the mean values to fill the empty values and further normalized the data with a
MinMaxScaler to prepare the features ready for training.

3.2.4 Process label data

To simplify our problem, we only considered single-genre instances and ignored all the
instances with multiple genres and with no genre, reducing the number of training instances to
10192. Furthermore, we mapped all the sub-genres to their top-genre as mentioned above. Below
shows the statistics about the 9 top-genres after mapping.
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Fig.5 Statistics about the 9 top-genres

3.3 Feature Selection and Dimensionality Reduction
3.3.1 Chi-square testing

We calculated the chi-square score of all training features and filtered out all insignificant
features with chi-square score less than 2, reducing the number of training features to 744.

3.3.2PCA

Principal Component Analysis (PCA) was used to compress the dimensions of the dataset
while retaining at least 90% of the variance. This was done by transforming the high-dimensional
features into lower-dimensional principal components. After performing PCA, the number of
features was significantly reduced to 121, allowing for a more comprehensive understanding of the
dataset's structure and reducing the likelihood of redundancy. By selecting the most important
principal components based on their variance contributions, we were able to make more accurate
predictions and analyses.

3.4 Model Training and Evaluation

We split the whole dataset into a 75% training set and a 25% testing set. For the training set,
we used 5-fold cross-validation to fine-tune the hyperparameters of each of the nine machine
learning models. Then, we applied the 9 best models to the testing set to see their performance.

For the fine-tuning strategy, we adopt the “GridSearchCV” in “sklearn.model selection”
package, which loops through all the combinations of predefined hyperparameters and gives back
the best model on the training set [9].

For the evaluation metric, since we had a relatively imbalanced dataset, accuracy may not be
suitable because it can be biased towards the majority class, leading to misleading performance
evaluations. And standard F1 score also failed because it doesn’t fit multi-class classification.
Hence, we chose to use the macro F1 score as our main evaluation metric, which gives equal
importance to each class by averaging the F1 scores of each class.



3.4.1 Support Vector Machine

Support Vector Machine (SVM) is a classical machine learning technique that is usually
used to solve big data classification problems. Its principle is to find a hyperplane that separates
the data into two classes with the maximum margin [10].

In our experiment, we took two hyperparameters into consideration when doing fine-tuning.
Here shows the hyperparameter list and the fine-tuning result:

Parameters Description Value

C Regularization parameter. It 0.1,1,10
represents the strength of the
regularization that is inversely
proportional to C. Smaller
values specify stronger
regularization.

Kernal The kernel type to be used in the | ‘'linear’, ‘poly’, 'rbf', 'sigmoid’
algorithm.
Hyperparameters: {C': 0.1, 'kernel’: 'linear’}

Mean cross-validation score (macro £1): 0.8036994453533938
Hyperparamsters: {C: 0.1, 'kernsl’: 'poly’}
Nean cross-validation score (macro £1): (.36368435205496305
Hyperparamsters: {C: 0.1, 'kernsl’: rhf’}
Mean cross-validation score (macro £1): 0.45756772447520044

Hyperparamsters: {C': 0.1, 'kernsl’: 'sigmoid'}
Hean cross-validation score (macro f1): 0.45779583106451066
Hyperparameters: {C: 1, 'kernel : ’linear’}

Hean eross-validation score (macro £1): 0.B6394094774869735
Hyperparameters: [{'C': 1, "kernel’: 'poly’
Mean cross-validation score (macro £1): 0.5838703536200239
Hyperparameters: {'C': 1, "kernel’: "rbf'}
Mean cross-validation score (macro £1): 0.8559864950945296

Hyperparameters: {'C’: 1, ’kernel’: ’sigmoid’}
Mean cross-validation score (macro £1): 0.5015692636771256
Hyperparamsters: {C: 10, 'kernsl’: *linsar’)}

Nean cross-validation score (macro f£1): 0.6354135776033457
Hyperparameters: {C': 10, “kernel’: “poly )

Nlean cross—validation score (macro £1): 0.8791013587414532
Hyperparameters: {C: 10, 'kernel’: "rbf’}

Nlean cross—validation score (macro £1): 0.7193330628454315
Hyperparameters: {C : 10, ’kernel’: ~sizmoid’}

Nean cross-validation score (macro £1): 0. 4806634845757334

Best hyperparameters: {C : 10, 'kernel’: 'rbf’}
Best performance in 5-fold cross validation (macra f£1): 0. 7193830628454315

Fig.6 Tuning of SVM

After the fine-tuning, we found that {'C": 10, 'kernel" 'rbf'} performs best. Therefore, we
applied this combination to the final model in the testing process.

3.4.2 Logistic Regression

Logistic Regression is a linear prediction model that applies step-by-step coverage to do value
forecast and classification [11]. It plays an important role in statistics because it can avoid
uncertainty by considering the relevance of all variables together [12].

In our experiment, we considered 3 hyperparameters when doing the fine-tuning. Here shows
the hyperparameter list and the fine-tuning result:

Parameters Description Value

C Regularization parameter. It 0.1, 1, 10, 50
represents the strength of the
regularization that is inversely
proportional to C. Smaller
values specify stronger
regularization.
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Solver

Type of the kernel

'saga’, 'sag’

Multi_class

Combine with the solver to
adjust the loss.

‘ovr', 'multinomial

Hyperparameters: {C': 0.1, "multi_class’ : "ovr’, “solver : "saga'}

Mean cross-validation score (macro £1): 0. 5573989897632264
Hyperparameters: {C': 0.1, "multi_class' : "ovr’, “solver : "sag'}
Mean cross-validation score (macro £1): 0.5573989897832264

Hyperparameters: {C: 0.1, "multi_class’ : "multinomial’, ' solver’ :

Mean cross-validation score (macro £1): 0.5798290880846863

Hyperparameters: {C: 0.1, ‘malti_clase’ : "maltinomial’, *solver’:

Mean cross-validation score (macro £1): 0.5793200380846863
Hyperparameters: {C: 1, 'multi_class’': "ovr’, 'solver’: ’saga'}
Mean cross-validation score (macro £1): 0.6179940233020388
Hyperparameters: ['C: 1, 'multi_class': “ovr’, 'solver’: ’sag'}
Mean cross-validation score (macro £1): 0.6177223138322564
Hyperparameters: {'C: 1, 'multi_class’: "multinomial’, *solver’ :
Mean cross-validation score (macro £1): 0.6331058093215089
Hyperparameters: {C: 1, 'multi_class’ : "multinomial’, *solver :
Nean cross-validation score (macro £1): 0.6331058093215099
Hyperparameters: {C: 10, ‘multi_class : “ovr’, " solver’ : saga’}
Nean cross-validation score (macro £1): 0. 6230225007890734
Hyperparameters: {C: 10, ‘multi_class’: “ovr’, 'solver’ : sag }
Nean cross-validation score (macro £1): 0. 6230225007890734
Hyperparameters: {C: 10, ‘multi_class : *multinomial’, ’solver :
Nean cross-validation score (macro £1): 0. 6332638323856073
Hyperparameters: {'C: 10, ‘multi_class’: ‘multinomial’, ’solver :
Nean cross-validation score (macro £1): 0.6334918876865164
Hyperparameters: {'C': B0, ‘multi_class’: "owr', 'solver’ : 'saga'}
Nean cross-validation score (macro £1): 0.6210510418385785
Hyperparameters: {'C': 50, 'multi_class’: “owr', 'solver’ : 'sag'}
Nean cross-validation score (macro £1): 0.621444200693242
Hyperparameters: {'C: 50, ‘multi_class’: ‘multinomial’, ’solver :
Nean cross-validation score (macro £1): 0. 8323328213435876
Hyperparameters: {C': B0, 'multi_class’: 'multinomial’, 'solver’:
Mean cross-validation score (macro £1): 0.6324059575855888

" zaga’}

‘zag’}

'saga’}

"saz')

’saga’}

' sag')

Psaga’l

’sag’}

Best hyperparameters: {C: 10, 'multi_class’: 'multinomial’, 'solver’: 'sag')
Best performance in 5-fold cross validation (macro £1): 0.6334018876266164

Fig.7 Tuning of Logistic Regression

After the fine-tuning, we found that {'C": 10, 'multi_class" 'multinomial’, 'solver": 'sag'}
performs best. Therefore, we applied this combination to the final model in the testing process.

3.4.3 K-NN

K-NN is a non-parametric algorithm that predicts the class of a new data point by finding the
K-closest training samples and classifying it based on the majority class among its neighbors [13].
It is a lazy learning method that highly depends on the value of K.

In our experiment, we took 3 hyperparameters into consideration when doing fine-tuning. Here
shows the hyperparameter list and the fine-tuning result:

Parameters

Description

Value

n_neighbors

Number of neighbors

3,57

stored in the leaf nodes of the
KD-tree data structure, which
affects the speed of the
construction and query, as well
as the memory required to store
the tree.

weights Weight function used in ‘uniform’, 'distance’
prediction.
leaf size The number of data points 10, 20, 30




Hyperparameters: { algorithm' : ’auto’, ’leaf_size': 10, ’n_neighbors’: 3, ’weights’: "uniform'}
Wean cross-validation score (macro £1): 0.8224429172911906

Hyperparameters: [ algorithm : " autn’, *leaf_size’ : 10, ‘n_nsighbors’ : 3, “weights’ : "distance’}
Mean cross-—validation score (macro £1): 0.6353352849634437

Hyperparameters: { algorithm' : "auto’, ’leaf_size': 10, 'n_neighbors’: 5, "weights’: 'uniform'}
Wean cross-—validation score (macro £1): 0.B5094034554790562

Hyperparameters: [ algorithm : *autn’, *leaf_size’ : 10, ‘n_nsighbors’ : 5, “weights’ : "distance’}
Mean cross-validation score (macro £1): 0.6379511561781869

Hyperparameters: { algarithm : ’auta’, 'leaf_size': 10, "n_neighbors’: 7, "weights’ : ’uniform'}
Mean cross-—validation score (macro £1): 0.59386506171967

Hyperparameters: { algorithm’ : "auto’, ’leaf_size': 10, 'n_neighbors’: 7, "weights’ : 'distance’}
Mean cross-validation score (macro £1): 0.6232317520196285

Hyperparameters: { algarithm : ’auta’, 'leaf_size': 20, "n_neighbors’: 3, "weights’ : ’uniform'}
Wean eross-validation score (maero £1): 0.8224429172911906

Hyperparameters: { algorithm : *auto’, ’leaf_size’: 20, 'n_neighbors’ : 3, “weights’ : "distance’}
Wean cross-validation score (macro £1): 0.B5353352849684487

Hyperparamaters: [ algorithm’ : "autn’, 'leaf_size': 20, 'n_neighbors : 5, "weights’: "uniform'}
Mean cross-validation score (macro £1): 0.6094034554790662

Hyperparameters: { algarithm’ : "auto’, 'leaf size': 20, 'n_neighbors’: 5, "weights’: "distance’}
Mean cross-validation score (macro £1): 0.6379511561781869

Hyperparameters: [ algorithm’ : " autn’, 'leaf_size': 20, 'n_neighbors : 7, "weights’ : "uniform'}
Mean cross-validation score (macro £1): 0.59386506171967

Hyperparameters: { algorithm' : ’auto’, ’leaf_size': 20, ’n_neighbors’: 7, ’weights’: ’distance’}
Wean eross-validation score (maero £1): 0.8232917520196285

Hyperparameters: { algorithm’ : *auto’, *leaf_size’: 30, 'n_neighbore’ : 3, “weights’ : "uniform }
Mean cross-validation score (macro £1): 0.6224429172911906

Hyperparamaters: [ algorithm’ : " autn’, 'leaf_size' : 30, 'n_neighbors’ : 3, “weights’ : "distance’}
Wean eross-validation score (maero £1): 0.B8353352849684487

Hyperparameters: [ algorithm : " autn’, *leaf_size’ : 30, 'n_neighbors : 5, “weights’ : "umiform }
Mean cross-validation score (macro £1): 0.6004034554790662

Hyperparameters: { algorithm’ : " autn’, 'leaf_size' : 30, 'n_neighbors’ : 5, "weights’ : "distance’}
Mean cross-—validation score (macro £1): 0.6379511561781869

Hyperparameters: { algorithm' : ’auto’, ’leaf_size': 30, ’n_neighbors’: 7, ’weights’: "uniform'}
Mean cross-validation score (macro £1): 0.59886506171967

Hyperparameters: [ algorithm : " autn’, *leaf_size’ : 30, ‘n_nsighbors’ : 7, “weights’ : "distance’}
Mean cross-—validation score (macro £1): 0.6232917520196285

Best hyperparameters: { algorithm' : 'auto’, leaf_size’: 10, 'n neighbors’: 5, ’weights': "distance’]

Best performance in 5-fold cross validation (macra £1):

0. 6379511561781869

Fig.8 Tuning of KNN

After the fine-tuning, we found that {'algorithm'": 'auto’, 'leaf_size": 10, 'n_neighbors": 5,
'weights": 'distance'} performs best. Therefore, we applied this combination to the final model in the

testing process.

3.4.4 Na've Bayes

Nawe Bayes is a mechanism for using the information in sample data to estimate the posterior
probability of each class y given an object x. It predicts the class of an instance based on the Bayes’
theorem and the assumption that all features are independent [14].

In our experiment, we took 2 hyperparameters into consideration when doing fine-tuning. Here
shows the hyperparameter list and the fine-tuning result:

Parameters

Description

Value

alpha

Value for Laplace Smoothing

0.1,05,1.0

fit_prior

Whether to take prior
probabilities into account.

True, False

Hyperparameters: { alpha’ :
Mean cross-walidation score
Hyperparameters: { alpha’ :
Mean cross-validation score
Hyperparameters: { alpha’ :
Mean cross-walidation score
Hyperparameters: { alpha’ :
Nean cross-validation score
Hyperparameters: { alpha’ :
Mean cross-validation score
Hyperparameters: { alpha’ :
Mean cross—validation score (macro £1J:

(macro £1):
(macro £1):
(macro £1):
(macro £1):

(macro £1):

0.1, "fit_prier’ : Truel

0. 05610066654497563

0.1, "fit prior’ : False}

0. 5790154593647915

0.5, "fit_prier’ : Truel

0. 05610066654497563

0.5, "fit prior’ : False}

0.5779476145484745

1.0, "fit_prior’ : Truel

0. 05610066654497563

1.0, "fit_prior’ : False}

0. 5781739619642365

Best hyperparameters: | alpha’:

0,1, "fit_prior’ :
Best performance in 5-fold cross validation (macro f£1):

Falsel
0. 5790154593647915

Fig.9 Tuning of Na'we Bayes
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After the fine-tuning, we found that {'alpha’: 0.1, 'fit_prior": False} performs best. Therefore,
we applied this combination to the final model in the testing process.

3.4.5 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis models the probability density function of each class using a
quadratic function and assigns the class with the highest probability to a new data point [15].

In our experiment, we took 3 hyperparameters into consideration when doing fine-tuning. Here
shows the hyperparameter list and the fine-tuning result:

Parameters Description Value

reg_param Regularizes the per-class 0.0,0.1,05,1.0
covariance estimates

store_covariance Whether regularizing the per- True, False
class covariance estimates

tol The absolute threshold for a le-3, le-4, 1e-5
singular value to be considered
significant.

Hyperparameters: | reg_param : 0.0, 'store_covariance’ : True, *tol’: 0.001}
Mean cross-validation score (macro f1): 0. 6070307452152996

Hyperparamsters: | reg_param : 0.0, 'store_covariance’ : Trus, ' tol’: 0.0001}
Mean cross-validation score (macro £1): 0. 60T0307452152996

Hyperparameters: | reg_param : 0.0, ’store_covariance’ : True, ' tol’: 1e-0S}
Nean cross-validation score (macro £1): 0. 60T0307452152996

Hyperparameters: | reg_param : 0.0, 'store_covariance’ : False, "tol’: 0.001}
Nean cross-validation score (macro £1): 0. 6070307452152996

Hyperparameters: | reg_param : 0.0, 'store_covariance’ : False, "tol’: 0.0001}
Mean cross-validation score (macro £1): 0.6070307452152996

Hyperparameters: | reg_param : 0.0, 'store_covariance’ : False, "tol’ : 1e-05}
Nean cross-validation score (macro £1): 0. 60T0307452152996

Hyperparameters: | reg_param : 0.1, ’store_covariance’ : True, *tol’: 0.001)
Mean cross-validation score (macro £1): 0. 19051140893477328
Hyperparameters: | reg_param : 0.1, 'store_covariance’ : True, ~tol’: 0.0001}
Nean cross-validation score (macro £1): 0. 19051140893477328
Hyperparameters: | reg_param : 0.1, "store_covariance’ : True, *tol’: 1e-05}
Mean cross-validation score (macro £1): 0. 19051140893477328
Hyperparameters: | reg_param : 0.1, 'store_covariance’ : False, "tol’: 0.001}
Mean cross-validation score (macro £1): 0. 19051140893477328
Hyperparameters: | reg_param : 0.1, ’store_covariance’ : False, "tol’: 0.0001}
Nean cross-validation score (macro £1): 0. 19051140893477328
Hyperparameters: | reg_param : 0.1, 'store_covariance’ : False, "tol’ : 1e-05}
Nean cross-validation score (macro f1): 0.19051140893477328
Hyperparamsters: | reg_param : 0.5, 'store_covariance’ : True, *tol’: 0.001}
Mean cross-validation score (macro £1): 0. 05610086654497562
Hyperparameters: | reg_param : (0.5, 'store_covariance’ : True, ' tol’: 0.0001}
Mean cross-validation score (macro £1): 0. 05610086654497562
Hyperparameters: | reg_param : 0.5, 'store_covariance’ : True, *tol’: 1e-05}
Nean cross-validation score (macro £1): 0. 05610086654497562
Hyperparameters: | reg_param : 0.5, 'store_covariance’ : False, "tol’ : 0.001}
Nean cross-validation score (macro f1): 0.05610086654497563
Hyperparameters: { reg_param : 0.5, 'store_covariance’ : False, 'tol’ : 0.0001}
Mean cross-validation score (macro £1): 0. 05610086654497562
Hyperparameters: | reg_param : (0.5, 'store_covariance’ : False, "tol’ : 1e-05}
Mean cross-validation score (macro £1): 0. 05610086654497562
Hyperparameters: | reg_param @ 1.0, 'store_covariance’ : True, *tol’: 0.001}
Nean cross-validation score (macro f1): 0.05610086654497563
Hyperparameters: | reg_param : 1.0, 'store_covariance’ : True, ' tol’: 0.0001}
Mean cross-validation score (macro £1): 0.05610066654497563
Hyperparameters: { reg_param : 1.0, ' store_covariance’ : Trus, ' tol’: 1s-05}
Mean cross-validation score (macro £1): 0. 05610086654497562
Hyperparameters: | reg_param : 1.0, 'store_covariance’ : False, "tol’ : 0.001}
Nean cross-validation score (macro £1): 0. 05610086654497562
Hyperparameters: | reg_param : 1.0, "store_covariance’ : False, "tol’ : 0.0001}
Nean cross-validation score (macro f1): 0.05610086654497563
Hyperparameters: { reg_param : 1.0, 'store_covariance’ : False, 'tol’ : 1e-05}
Mean cross-validation score (macro £1): 0.05610066654497563

Best hyperparameters: | reg_param : 0.0, 'store_covariance’ : True, ' tol’: 0.001}
Best performance in 5-fold cross validation (macro £1): 0.8070307452152996

Fig.10 Tuning of Quadratic Discriminant Analysis

After the fine-tuning, we found that {'reg_param': 0.0, 'store_covariance": True, 'tol": 0.001}
performs best. Therefore, we applied this combination to the final model in the testing process.
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3.4.6 Random Forest

Random Forest is an ensemble model that builds multiple decision trees on randomly sampled
subsets of features and data and aggregates their predictions to improve the accuracy and reduce the
overfitting of the model.

In our experiment, we took three hyperparameters into consideration when doing fine-tuning.
Here shows the hyperparameter list and the fine-tuning result:

Parameters Description Value
n_estimators The number of trees in the forest | 200,500
max_depth The maximum depth of the tree. | 10, 20
max_features The number of features to 'sqrt','log2'
consider when looking for the
best split

Hyperparameters: | max_depth’ : 10, "max_features : “sqrt’, 'n_estimators : 200}

Mean cross-validation score (macro £1): 0. 43087765201863456

Hyperparameters: | max_depth’ : 10, "max_features : “sqrt’, 'n_estimators’ : 500}

Mean cross-validation score (macro £10: 0. 4331841544070921

Hyperparameters: { max_depth’ : 10, 'max_features : "loz2', 'n_estimators : 200}

Mean cross-validation score (macro £1): 0. 3497731296324221

Hyperparameters: | max_depth’ : 10, 'max features : "log?', 'n_estimators : 500}

Nean cross-validation secore (macro £1): 0. 3500074950735617

Hyperparameters: | max_depth’ : 20, "max_features : “sqrt’, ‘n_estimators : 200}

Nean cross-validation score (macro £1): 0. 47R4265995A2587

Hyperparameters: | max_depth’ : 20, "max_features : “sqrt’, 'n_estimators : 500}

Mean cross-validation score (macro £1): 0. 47920879604560055

Hyperparameters: | max_depth’ : 20, "max_features : "loz2’, 'n_estimators : 200}

Mean cross-validation score (macro £1): 0. 44404057266585034

Hyperparameters: { max_depth’ : 20, 'max_features : "log?’, 'n_estimators : 500}

Mean cross-validation score (macro £1): 0. 44136383587336675

Best hyperparameters: § max_depth’ : 20, “max features : ~sqrt’, 'n_estimators : 50O}
Best performance in 5-fold cross validation (macro £1): 0. 47920879604569055

Fig.11 Tuning of Random Forest

After the fine-tuning, we found that {'max_depth": 20, 'max_features': 'sgrt', 'n_estimators": 500}
performs best. Therefore, we applied this combination to the final model in the testing process.

3.4.7 Multiple Layer Perceptron

The Multiple Layer Perceptron (MLP) is a feedforward neural network that consists of multiple
layers of nodes, where each node is a non-linear function of a linear combination of its inputs, and
it is trained using backpropagation to minimize the error between the predicted and actual outputs
[16].

In our experiment, we took 3 hyperparameters into consideration when doing fine-tuning. Here
shows the hyperparameter list and the fine-tuning result:

Parameters Description Value

hidden_layer_sizes The i element represents the (50,), (100,), (500,), (1000,),
number of neurons in the i (50,30,), (100,50,), (500,200,),
hidden layer. (50,30,20,)
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activation

Activation function for the
hidden layer.

‘relu’, 'logistic'

solver The solver for weight 'Ibfgs’, 'adam’
optimization.

Hyperparameters: | activation’: 'relu’, "hidden layer_sizes’ : (50,), 'solwexr’: '1bfgs’}
Mean cross—validation score (macre £1): 0.6218509156591677
Hyperparameters: [ activation’ : 'relu’, hidden layer_sizes": (50,), 'solver’: 'adam’}
Mean cross—validation score (macro £1): 0.6555820148235988
Hyperparameters: [ activation’: 'relu’, "hidden layer_sizesz’: (100,), "solwer’: "lbfgs'}
Mean cross—validation score (macro £1): 0.647048240356242
Hyperparameters: | activation’: "relu’, “hidden layer sizes”: (100,), “solver’ : "adam’}
Mean cross—validation score (macro £1): 0.6781780006380916
Hyperparameters: | activation’: ’relu’, 'hidden layer_sizes’: (500,), "solwexr’: *lbfgs’}
Mean cross—validation scove (macre £1): 0.6T30883123624306
Hyperparameters: [ activation’ : "relu’, hidden layer_sizes": (500,), "solver’: ’adam’}
Mean cross—validation score (macro £1): 0. 7181602966108023
Hyperparameters: [ activation’: "relu’, “hidden layer_sizes : (1000,), *solver’: 'lbfgs'!
Mean cross—validation score (macro £1): 0.6T71458847395049
Hyperparameters: | activation’: 'relu’, "hidden layer_sizesz’: (1000,), ’solwver’: "adam’}
Mean cross—validation score (macro £1): (. 7154637062304354
Hyperparameters: | activation’: ’relu’, “hidden layer_sizes’: (50, 30), 'solver’: *1lbfgs’!}
Mean cross—validation scove (macre £1): 0.6245464523068918
Hyperparameters: | activation’: 'relu’, *hidden layer_sizes’ : (50, 300, 'solver’: *adam’]
Mean cross—validation score (macro £1): 0.6373521948328634
Hyperparameters: [ activation’ : 'relu’, "hidden_layer_sizes’: (100, 501, *solwer’ : *1bfgs'}
Mean cross—validation score (macro £1): 0.6477211750763787
Hyperparameters: [ activation’: "relu’, "hidden layer_sizesz” : (100, 50), "solver’: 'adam’}
Mean cross—validation score (macro £1): 0.6T35736052456822
Hyperparameters: | activation’: "relu’, “hidden layer_ sizes” : (500, 200), ’solwer’ : "1bfgs’}
Mean cross—validation score (macro f1): (.6792188245675554
Hyperparameters: | activation’: 'relu’, “hidden layer sizes’ : (500, 200), '=zolwer’ : "adam'}
Mean cross—validation scove (macre £1): 0. 7022652838544366
Hyperparameters: [ activation’: 'relu’, "hidden layer_sizes’: (50, 30, 20), 'solver’: '1bfgs"]
Mean cross—validation score (macro £1): 0.6149542715360308
Hyperparameters: { activation’: "relu’, "hidden layer_sizesz’ : (80, 30, 20), 'solver’: *adam’}
Mean cross—validation score (macro £1): 0.62017H9974708611
Hyperparameters: | activation’: *logistic', "hidden layer sizes’ : (50,), "solwer’: "1bfgs'}
Mean cross—validation score (macro £1): 0.6025810677240011
Hyperparameters: | activation’: *logistic’', “hidden layer sizes’: (50,), 'solver’: ’adam’}
Mean cross—validation scove (macro £1): 0.64042214509275248
Hyperparameters: | activation’: *logistic', "hidden layer sizes’ : (100,), '=zolwer’: '1bfgs’}
Mean cross—validation score (macro £1): 0.6264131169510951
Hyperparameters: [ activation’ : ’logistic’, "hidden_layer sizes’: (100,), "=solwer’ : "adam’}
Mean cross—validation score (macro £1): 0.6475385440135243
Hyperparameters: | activation’: *logistic’, "hidden layer sizes': (500,), "solwer’: "1bfgs"}
Mean cross—validation score (macro £1): 0.6306185529763344
Hyperparameters: | activation’: *logistic', "hidden layer sizes’ : (500,), 'solwer’ : "adanm'}
Mean cross—validation score (macro £1): (.6388135511630205
Hyperparameters: | activation’: ’logistic’, “hidden layer sizes’: (1000,), *=zolver’ : "lbfgs’}
Mean cross—validation score (macro £1): 0.6265238011874281
Hyperparameters: [ activation’: ’logistic’, "hidden_layer sizes’ : (1000,), *=zolver’ : "adam’}
Mean cross—validation score (macro £1): 0.6354125530753137
Hyperparameters: [ activation’: *logistic’, "hidden layer sizes’ : (80, 30), 'solwver’: ' 1bfgs’}
Mean cross—validation score (macro £1): 0.61669233139281109
Hyperparameters: | activation’: 'logistic', "hidden layer sizes’: (50, 30), 'solver’: *adam’}
Mean cross—validation score (macro f1): (.6361725475760851
Hyperparameters: | activation’: ’logistic’, “hidden layer sizes’ : (100, 50), *solver': *1lbfgs’}
Mean cross—validation scove (macre £1): 0.63362062317325091
Hyperparameters: | activation’: *logistic', "hidden layer sizes’ : (100, 50), "=zolver': *adam’}
Mean cross—validation score (macro £1): 0.6545140755544816
Hyperparameters: [ activation’ : ’logistic’, "hidden_layer_sizes’ : (500, 200}, "solwver’: "1bfgs"}
Mean cross—validation score (macro £1): 0.6117606975353386
Hyperparameters: | activation’: *logistic', "hidden layer sizes' : (500, 2000, "=zolver’: "adam’}
Mean cross—validation score (macro £1): 0.6593808828398527
Hyperparameters: | activation’: *logistic', "hidden layer sizes’ : (50, 30, 20), “solwexr’: "lbfgs'}
Mean cross—validation score (macro f1): (.5921833944476147
Hyperparameters: | activation’: *logistic’', “hidden layer sizes’ : (50, 30, 200, 'solver’: *adam’}
Mean cross—validation score (macro £1): 0.5651201151324623
Best hyperparameters: [ activation’ : "relu', “hidden_layer sizes’ : (500,), ’=zolver’: "adam’}

Best performance in 5—fold cross validation (macro £1):

0. T181692966109023

Fig.11 Tuning of Multiple Layer Perceptron

After the fine-tuning, we found that {‘activation’: ‘relu’, 'hidden_layer sizes": (500,), 'solver"
‘adam’} performs best. Therefore, we applied this combination to the final model in the testing

process.

3.4.8 CatBoost (not implemented in sklearn)

CatBoost is an algorithm for gradient boosting on decision trees which is developed by Yandex

researchers in 2017 [17].
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CatBoost works by building a set of decision trees consecutively, where each tree tries to
reduce the loss compared to the previous trees. To build each tree, CatBoost uses a greedy algorithm
that splits the data based on the feature that minimizes the loss function. However, unlike other
boosting algorithms, CatBoost uses oblivious decision trees, where each split is based on the same
feature for all the data points at a given level of the tree. This makes the prediction faster and more
robust to noise. [17].

In our experiment, we took 2 hyperparameters into consideration when doing fine-tuning. Here
shows the hyperparameter list and the fine-tuning result:

Parameters Description Value
iterations Number of iterations 50,100,500
learning_rate Learning rate in gradient descent 0.01,0.1

Hyperparameters: [’ iterations’ : 50, "learning_rate’ : 0,01}
Mean cross—validation score (macro f1): 0.365432136570692
Hyperparameters: [ iterations”: 590, "learning wate’: 0.1}
Mean cross—validation score (macro £1): 0.4558863813009725
Hyperparameters: [ iterations”: 100, " learning rate’ : 0.01}
Mean cross—validation score (macro £1): 0.33546197541256083
Hyperparameters: | iterations: 100, " learning rate’ : 0.1}
Mean cross—validation score (macro £1): 0.5122087572014571
Hyperparameters: { iterations’: 500, ' learning rate’ : 0.01}
Mean cross—validation score (macro £1): 0. 4665479408999 766
Hyperparameters: | iterations’ : 500, ’learning rate’ : 0.1}

Mean cross—validation score (macro £1): 0.6207619387305623

Best hyperparametersz: [ iteratioms’: 500, ' learning rate': 0.1}
Be=t performance in 5—fold crosz walidation (macro f1): 0.A207T619387305623

Fig.13 Tuning of CatBoost

After the fine-tuning, we found that {'iterations: 500, 'learning rate": 0.1} performs best.
Therefore, we applied this combination to the final model in the testing process.

3.4.9 XGBoost (not implemented in sklearn)

XGBoost (Extreme Gradient Boosting) is a powerful and scalable gradient boosting algorithm
that uses decision trees as base learners to make predictions which was invented by Tiangi Chen in
2014.

The principle of XGBoost can be explained in the following steps [18]:

1. Initialize the model with the mean value of the target variable.

2. Train a decision tree to predict the residuals of the previous model.

3. Add the new decision tree model to the previous model and update the predictions.

4. Repeat steps 2 and 3 until a specified number of trees (n_estimators) have been built, or until
the performance on the validation set stops improving.

5. Make predictions by summing the predictions of all the decision trees.

In our experiment, we took 2 hyperparameters into consideration when doing fine-tuning. Here
shows the hyperparameter list and the fine-tuning result:
Parameters Description Value

max_depth maximum depth of each decision tree 5, 7, None
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https://catboost.ai/docs/concepts/python-usages-examples.html
https://catboost.ai/docs/concepts/python-usages-examples.html
https://dhavalthakur.medium.com/what-is-catboost-algorithm-step-by-step-tutorial-2c93aa566068
https://dhavalthakur.medium.com/what-is-catboost-algorithm-step-by-step-tutorial-2c93aa566068
https://dhavalthakur.medium.com/what-is-catboost-algorithm-step-by-step-tutorial-2c93aa566068

n_estimators the number of decision trees 200, 500

Hyperparameters: {'max _depth': 5, 'n_estimators': 2@@}

Mean cross-validation score (macro f1): ©.6169128288510787
Hyperparameters: {'max _depth': 5, 'n_estimators': 5ee}

Mean cross-validation score (macro fl1): ©.6290077173840094
Hyperparameters: {'max depth': 7, 'n_estimators': 2@@}

Mean cross-validation score (macro f1): ©.6209578651726337
Hyperparameters: {'max depth': 7, 'n_estimators': 5ee}

Mean cross-validation score (macro f1): ©.6278184693935199
Hyperparameters: {'max_depth': None, 'n_estimators': 200}

Mean cross-validation score (macro fl1): ©.622257014677521
Hyperparameters: {'max_depth': None, 'n_estimators': 500}

Mean cross-validation score (macro f1): ©.6303818011735993
Best hyperparameters: {'max_depth': None, 'n_estimators': 500}
Best performance in 5-fold cross validation (macro f1): ©.6303818011735993

Fig.14 Tuning of XGBoost

By adjusting the maximum depth and number of estimators, we found that {'max_depth': None,
'n_estimators': 500} performs best. Therefore, we applied this combination to the final model in the
testing process.

4. Result

After getting the best settings for all 9 kinds of machine-learning models, we apply those models
to the testing set to compare their performance. Below shows a comparison table and confusion
matrixes of the 9 models.

Model Training | Testing Accuracy Precision Recall F1-Score
Time Time (macro)
SVM 5.7801 | 2.2243 77.55% 0.7848 0.7179 0.7452
Logistic 7.4726 | 0.0015 71.82% 0.6632 0.6204 0.6299
Regression
K-NN 0.004 0.1600 69.15% 0.6773 0.6361 0.6488
Naive Bayes 0.0159 | 0.0030 62.05% 0.5947 0.6162 0.5749
QDA 2.5069 | 0.0282 71.04% 0.7492 0.6049 0.6491
Random Forest | 67.0917 | 0.4688 66.33% 0.7394 0.4719 0.4929
Multiple Layer | 39.6285 | 0.0159 76.73% 0.7455 0.7115 0.7261
perceptron
CatBoost 43.3773 | 0.0633 72.53% 0.7706 0.6057 0.6369
XGBoost 64.0567 | 0.0705 72.45% 0.7421 0.6095 0.6424
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Fig.15 Confusion matrix of SVM
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From the results, we can see that SVM achieved the highest F1 score of 0.7452 and the highest
accuracy of 77.55%, followed closely by Multiple Layer Perceptron with an F1 score of 0.7261 and an
accuracy of 76.73%. On the other hand, the performance of Naive Bayes and Random Forest seems to
be unacceptable, with F1 scores of merely 0.5749 and 0.4929 respectively. The rest 5 models also
achieved a relatively high F1 score around 0.63-0.64.

Overall, the results suggest that SVM and Multiple Layer Perceptron are the most promising

models for our music genre classification problem, as they achieved the highest accuracy and F1 scores.
In contrast, Naive Bayes and Random Forest with the current hyperparameter settings may not be ideal
choices.
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5. Insights and Reflection
5.1 Importance of feature selection and dimensionality reduction
To verify our team conducted effective feature reduction, we further compared the performance

of the best models we obtained (SVM and Multiple Layer Perceptron) trained by features with Chi-
square Testing and PCA (totally 121 features), and without them (totally 874 features).

Model Number | Training | Testing | Accuracy | Precisi | Recall | F1-Score
of Time Time on (macro)
features

SVM(with  feature | 121 5.7801 2.2243 | 77.55% 0.7848 | 0.7179 | 0.7452
selection)
SVM(without feature | 874 12.3244 4.0154 | 74.05% 0.7076 | 0.6751 | 0.6888
selection)
MLP(with  feature | 121 39.6285 0.0159 | 76.73% 0.7455 | 0.7115 | 0.7261
selection )
MLP(without feature | 874 132.4131 | 0.0179 | 73.46% 0.6884 | 0.7006 | 0.6894
selection)

From the above table, for both SVM and the Multiple Layer Perceptron, ignoring feature selection
and dimensionality reduction will not only lead to the degradation of the model performance, but also
greatly increase the training time and testing time, which verifies the feature selection and
dimensionality process in our project is essential.

5.2 Explanation of the poor performance of Na'we Bayes and Random Forest

For Naive Bayes, the most likely reason for its poor performance is that there is high dependence
in our features which is against the assumption of Naive Bayes that all the features should be
independent from each other. It makes sense because most of the features were extracted by the same
music analyzation algorithms which may be highly dependent on each other. The result of PCA also
verifies this since we only needed 121 principal components to explain 90% variance of our data
(originally 774 features before PCA).

For Random Forest, we were surprised at its poor performance since it is a widely accepted fact
that it should perform very well in multi-class classification problem. Hence, we made detailed testing
and found it suffered from the overfitting issue since there was a big gap between the training error and
the validation error.
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Hyperparameters: | max_depth’ : 10, "maz_features : *sqrt’, 'n_estimators’ : 200}
Mean cross-validation score (macro f£1): 0.4313223441179603

Mean training score (macro f1): 0.7891574459696352

Hyperparameters: [ max_depth’ : 10, 'maz_features : ’sqrt’, 'n_estimators’ : 500}
Mean cross-validation score (macro f£1): 0. 43179360326267036

Mean training score (macro f1): 0.7897358215171197

Hyperparameters: [ max_depth’ : 10, 'maz_features : *log2, 'n_estimators : 200}
Mean cross-validation score (macro f1): 0.3522367213532726

Mean training score (macro f1): 0.709317425952343

Hyperparameters: [ max_depth’ : 10, 'maz_features : *log2, 'n_estimators : 500}
Mean cross-validation score (macro f£1): 0.3411578285134075

Mean training score (macro f1): 0.709661512153477

Hyperparameters: [ max_depth’ : 20, 'maz_features : ’sqrt’, 'n_estimators’ : 200}
Mean cross-validation score (macro f1): 0.4814380419392846

Mean training score (macro f1): 0.9995878538185895

Hyperparameters: [ maz_depth’ : 20, "maz_features : "sart’, 'n_estimators’ : 500}
Mean cross-validation score (macro f£1): 0.4851124624572657

Mean training score (macro f1): 0.9997194507635061

Hyperparameters: | max_depth’ : 20, "log2’, 'n_estimators’ : 200}
Mean cross-validation score (macro f£1): 0.4355610056586614

Mean training score (macro f1l): 0.999849858193494

Hyperparameters: [ max_depth’ : 20, 'maz_features : ’log2, 'n_estimators : 500}
Mean cross-validation score (macro f£1): 0.44191232410661146

Mean training score (macro f£1): 0.9998144536017733

Fig.24 Identifying overfitting in Random Forest
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Finally, we added some more restrictions such as “max_depth”, “min_samples leaf”, and
“min_samples_split” to decrease the model complexity of the Random Forest. The table below
demonstrates that restricting the model complexity of the Random Forest can significantly upgrade the
model performance.

Model Training | Testing | Accuracy | Precision | Recall | F1-Score
Time Time (macro)
Random Forest | 67.0917 0.4688 | 66.33% 0.7394 0.4719 | 0.4929
(without restriction)
Random Forest (with | 26.3539 0.3492 | 69.43% 0.6897 0.6125 | 0.6151
restriction)

6 Conclusion/Future Work

In conclusion, our project demonstrated that machine learning techniques, combined with
feature selection and dimensionality reduction, can effectively predict music genres. Among all the
models tested, SVM and Multiple Layer Perceptron achieved the highest accuracy, while Naive
Bayes and Random Forest failed. We further verified the importance of feature selection and
dimensionality reduction techniques and tried to explain the reasons for the poor performance of
Naive Bayes and Random Forest.

For future work, some technics like “SOMTE” could be used to make the dataset more
balanced to improve the performance of the models. Other feature selection and dimensionality
reduction methods could be explored to evaluate their effectiveness, and the dataset could be
diversified to include more music genres and a broader range of audio features.

Overall, the project provided valuable insights into the potential of machine learning
techniques for predicting music genres and highlighted the importance of algorithm selection,
feature selection, and dimensionality reduction in improving the task fulfillment. Future work in
this area could have significant practical applications in music recommendation, music retrieval,
and related fields.
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