
1

Comparison of Different Machine Learning Models on

Classification of Music Genres
Project Category: Machine learning

HAO Jiadong

DUAN Mingfei

HUANG Yufeng

Abstract

Music genre classification has been an active research area in recent years,

with increasing amount of digital music data available. In this paper, we

compared nine different music genre classifiers and evaluated their

performance on a large and famous dataset of music tracks called FMA

(Free Music Archive). We applied various feature extraction techniques

and machine learning algorithms to classify music tracks into nine top-

genres. Our results showed that the performance of the classifiers varies

significantly depending on the machine learning algorithms used. We also

presented a comprehensive reflection on the results and proposed some

possible future improvements.

1. Introduction

Music genre classification is a challenging problem and has remained to be a hot topic in recent

years. The ability to automatically categorize large amounts of music tracks into different genres has

numerous practical applications, including music recommendation systems, playlist generation, music

search engines and music streaming services [1]. For instance, music recommendation systems like

Spotify and Pandora rely heavily on genre classification algorithms to suggest songs to users.

Additionally, music search engines like Shazam use genre classification to identify songs and provide

information on them [2]. Moreover, genre classification models can also be used in music analysis and

research, such as studying the evolution of musical genres over time [3]. Hence, a powerful machine

learning model for music genre classification is in great need.

Over the years, researchers have been trying various approaches to automate the music

classification process, ranging from traditional machine learning techniques [3] to more recent deep

learning methods [4][5].

In this paper, our team trained 9 classifiers which are SVM, Logistic Regression, K-NN, Naïve

Bayes, Quadratic Discriminant Analysis, Random Forest, Multilayer perceptron, CatBoost and

XGBoost, and further compared their performance. We also discussed some insights and some

extrapolations based on the results.

2. Dataset

The dataset used is the Free Music Archive (FMA), a large, open-source music dataset published

in 2017 containing 106,574 music tracks from 16,341 artists and 14,854 albums, arranged in a

hierarchical taxonomy of 161 genres [6].

We mainly focus on four files, which are:

2

File name Description

tracks.csv Metadata about each track in the

dataset, such as the track ID, the

album, the artist, and the title. It

also includes information about

the license under which each

track is released, the duration,

and number of listens.

features.csv Various audio features extracted

from each track, such as tempo,

key, and spectral characteristics,

generated by the Marsyas

feature extraction library and are

stored as numerical values.

echonest.csv Additional metadata and

features, obtained by the Echo

Nest API, including features

such as danceability, energy,

and loudness, as well as

information about the popularity

and familiarity of each track.

genres.csv An excerpt of built-in genre

hierarchy, that is all 163 genres

with name and parent (top-level

genres).

In the genres.csv, the column “top_level” indicates the top-level genres of a particular genre. In

our experiment, we only considered the 9 top-level genres to simplify the problem and save our time

and computational power.

 Fig.1 The file genres.csv storing the genre hierarchy

The figure below shows the statistics of all 16 top-genres existing in the genres file. However,

during the data preprocessing phase, we dropped some records hence some of the top-genres may have

very few instances, causing extreme imbalance in the dataset. Hence, we manually merged those top-

genres with very few records into a new group called “Other” so that finally we only considered 9 top-

genres (details see in 3.2.4).

3

Fig.2 Statistics of the number of tracks in each top-level genre

3. Experiment and Methods

Fig.3 Our machine-learning pipeline

3.1 Data Reading

The tracks.csv, features.csv, and echonest.csv provided the training features while the genres.csv

provided a mapping between the sub-genre of a track and its top-genre. We further inner-joined the

three files containing the features so that only tracks that exist in all three files are retained,

reducing the dataset size to 13554.

3.2 Data Preprocessing

3.2.1 Dropping irrelevant features by domain knowledge

By analyzing all the training features, we found that some of the training features are totally

irrelevant to our genre classification problem, like the location of the artist. Including them may

downgrade the performance of our models and dramatically increase the time and computational

cost. Hence, we choose to drop all these irrelevant features by domain knowledge at the very first

stage of the data preprocessing. At the end of this step, we reduced the number of features from

806 to 776.

4

 Fig.4 Dropping list of irrelevant features

3.2.2 Processing the string features

After dropping all irrelevant features, there were two features remaining to be in string

format that needed to be converted to numeric values before being fed to the machine learning

models, which were “track_duration” and “track_title”.

For “track_duration”, which is in the format “xx:yy”, where xx is for minutes and yy is for

seconds, we just converted them to the number of seconds.

For “track_title”, the Word2Vec algorithm was used to convert the feature into numeric

values. Word2Vec algorithm is a commonly used neural network-based algorithm in natural

language processing to convert text data into numerical format. It can represent words as vectors,

where words with similar meanings are placed close to each other in a high-dimensional vector

space [7]. In our case, we used this algorithm to convert the track titles into numerical vectors,

which can be taken in by the models.

We first used Word2Vec to create feature vectors for each word that appears in the track

titles, which allowed us to capture the semantic meaning of each word in the track titles. Then, to

calculate the semantic meaning of each title, we used the mean value of the words in the title,

which was then used as a series of features in our machine learning models [8].

By using Word2Vec to convert track titles into vectors, we were able to improve the result of

our models, as it helped to capture the semantic meaning of the track titles, allowing the models

to better understand the underlying sentiment and emotional tone of the songs. This approach

proved to be effective in our analysis, as it allowed us to accurately predict the sentiment of each

track based on the track’s title.

After this step, the number of features increased to 874.

3.2.3 Fill in empty values and normalize the data

We used the mean values to fill the empty values and further normalized the data with a

MinMaxScaler to prepare the features ready for training.

3.2.4 Process label data

To simplify our problem, we only considered single-genre instances and ignored all the

instances with multiple genres and with no genre, reducing the number of training instances to

10192. Furthermore, we mapped all the sub-genres to their top-genre as mentioned above. Below

shows the statistics about the 9 top-genres after mapping.

5

 Fig.5 Statistics about the 9 top-genres

3.3 Feature Selection and Dimensionality Reduction

3.3.1 Chi-square testing

We calculated the chi-square score of all training features and filtered out all insignificant

features with chi-square score less than 2, reducing the number of training features to 744.

3.3.2 PCA

Principal Component Analysis (PCA) was used to compress the dimensions of the dataset

while retaining at least 90% of the variance. This was done by transforming the high-dimensional

features into lower-dimensional principal components. After performing PCA, the number of

features was significantly reduced to 121, allowing for a more comprehensive understanding of the

dataset's structure and reducing the likelihood of redundancy. By selecting the most important

principal components based on their variance contributions, we were able to make more accurate

predictions and analyses.

3.4 Model Training and Evaluation

We split the whole dataset into a 75% training set and a 25% testing set. For the training set,

we used 5-fold cross-validation to fine-tune the hyperparameters of each of the nine machine

learning models. Then, we applied the 9 best models to the testing set to see their performance.

For the fine-tuning strategy, we adopt the “GridSearchCV” in “sklearn.model_selection”

package, which loops through all the combinations of predefined hyperparameters and gives back

the best model on the training set [9].

 For the evaluation metric, since we had a relatively imbalanced dataset, accuracy may not be

suitable because it can be biased towards the majority class, leading to misleading performance

evaluations. And standard F1 score also failed because it doesn’t fit multi-class classification.

Hence, we chose to use the macro F1 score as our main evaluation metric, which gives equal

importance to each class by averaging the F1 scores of each class.

6

3.4.1 Support Vector Machine

 Support Vector Machine (SVM) is a classical machine learning technique that is usually

used to solve big data classification problems. Its principle is to find a hyperplane that separates

the data into two classes with the maximum margin [10].

In our experiment, we took two hyperparameters into consideration when doing fine-tuning.

Here shows the hyperparameter list and the fine-tuning result:

Parameters Description Value

C Regularization parameter. It

represents the strength of the

regularization that is inversely

proportional to C. Smaller

values specify stronger

regularization.

0.1, 1, 10

Kernal The kernel type to be used in the

algorithm.

'linear', 'poly', 'rbf', 'sigmoid'

Fig.6 Tuning of SVM

After the fine-tuning, we found that {'C': 10, 'kernel': 'rbf'} performs best. Therefore, we

applied this combination to the final model in the testing process.

3.4.2 Logistic Regression

Logistic Regression is a linear prediction model that applies step-by-step coverage to do value

forecast and classification [11]. It plays an important role in statistics because it can avoid

uncertainty by considering the relevance of all variables together [12].

In our experiment, we considered 3 hyperparameters when doing the fine-tuning. Here shows

the hyperparameter list and the fine-tuning result:

Parameters Description Value

C Regularization parameter. It

represents the strength of the

regularization that is inversely

proportional to C. Smaller

values specify stronger

regularization.

0.1, 1, 10, 50

7

Solver Type of the kernel 'saga', 'sag'

Multi_class Combine with the solver to

adjust the loss.

'ovr', 'multinomial'

Fig.7 Tuning of Logistic Regression

After the fine-tuning, we found that {'C': 10, 'multi_class': 'multinomial', 'solver': 'sag'}

performs best. Therefore, we applied this combination to the final model in the testing process.

3.4.3 K-NN

K-NN is a non-parametric algorithm that predicts the class of a new data point by finding the

K-closest training samples and classifying it based on the majority class among its neighbors [13].

It is a lazy learning method that highly depends on the value of K.

In our experiment, we took 3 hyperparameters into consideration when doing fine-tuning. Here

shows the hyperparameter list and the fine-tuning result:

Parameters Description Value

n_neighbors

Number of neighbors 3, 5, 7

weights Weight function used in

prediction.

'uniform', 'distance'

leaf_size The number of data points

stored in the leaf nodes of the

KD-tree data structure, which

affects the speed of the

construction and query, as well

as the memory required to store

the tree.

10, 20, 30

8

Fig.8 Tuning of KNN

After the fine-tuning, we found that {'algorithm': 'auto', 'leaf_size': 10, 'n_neighbors': 5,

'weights': 'distance'} performs best. Therefore, we applied this combination to the final model in the

testing process.

3.4.4 Naïve Bayes

Naïve Bayes is a mechanism for using the information in sample data to estimate the posterior

probability of each class y given an object x. It predicts the class of an instance based on the Bayes’

theorem and the assumption that all features are independent [14].

In our experiment, we took 2 hyperparameters into consideration when doing fine-tuning. Here

shows the hyperparameter list and the fine-tuning result:

Parameters Description Value

alpha

Value for Laplace Smoothing 0.1, 0.5, 1.0

fit_prior Whether to take prior

probabilities into account.

True, False

 Fig.9 Tuning of Naïve Bayes

9

After the fine-tuning, we found that {'alpha': 0.1, 'fit_prior': False} performs best. Therefore,

we applied this combination to the final model in the testing process.

3.4.5 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis models the probability density function of each class using a

quadratic function and assigns the class with the highest probability to a new data point [15].

In our experiment, we took 3 hyperparameters into consideration when doing fine-tuning. Here

shows the hyperparameter list and the fine-tuning result:

Parameters Description Value

reg_param

Regularizes the per-class

covariance estimates

0.0, 0.1, 0.5, 1.0

store_covariance Whether regularizing the per-

class covariance estimates

True, False

tol The absolute threshold for a

singular value to be considered

significant.

 1e-3, 1e-4, 1e-5

 Fig.10 Tuning of Quadratic Discriminant Analysis

After the fine-tuning, we found that {'reg_param': 0.0, 'store_covariance': True, 'tol': 0.001}

performs best. Therefore, we applied this combination to the final model in the testing process.

10

3.4.6 Random Forest

Random Forest is an ensemble model that builds multiple decision trees on randomly sampled

subsets of features and data and aggregates their predictions to improve the accuracy and reduce the

overfitting of the model.

In our experiment, we took three hyperparameters into consideration when doing fine-tuning.

Here shows the hyperparameter list and the fine-tuning result:

Parameters Description Value

n_estimators

The number of trees in the forest 200,500

max_depth The maximum depth of the tree. 10, 20

max_features The number of features to

consider when looking for the

best split

'sqrt','log2'

 Fig.11 Tuning of Random Forest

After the fine-tuning, we found that {'max_depth': 20, 'max_features': 'sqrt', 'n_estimators': 500}

performs best. Therefore, we applied this combination to the final model in the testing process.

3.4.7 Multiple Layer Perceptron

The Multiple Layer Perceptron (MLP) is a feedforward neural network that consists of multiple

layers of nodes, where each node is a non-linear function of a linear combination of its inputs, and

it is trained using backpropagation to minimize the error between the predicted and actual outputs

[16].

In our experiment, we took 3 hyperparameters into consideration when doing fine-tuning. Here

shows the hyperparameter list and the fine-tuning result:

Parameters Description Value

hidden_layer_sizes

The ith element represents the

number of neurons in the ith

hidden layer.

(50,), (100,), (500,), (1000,),

(50,30,), (100,50,), (500,200,),

(50,30,20,)

11

activation Activation function for the

hidden layer.

'relu', 'logistic'

solver The solver for weight

optimization.

'lbfgs', 'adam'

 Fig.11 Tuning of Multiple Layer Perceptron

After the fine-tuning, we found that {‘activation’: ‘relu’, 'hidden_layer_sizes': (500,), 'solver':

‘adam’} performs best. Therefore, we applied this combination to the final model in the testing

process.

3.4.8 CatBoost (not implemented in sklearn)

CatBoost is an algorithm for gradient boosting on decision trees which is developed by Yandex

researchers in 2017 [17].

12

CatBoost works by building a set of decision trees consecutively, where each tree tries to

reduce the loss compared to the previous trees. To build each tree, CatBoost uses a greedy algorithm

that splits the data based on the feature that minimizes the loss function. However, unlike other

boosting algorithms, CatBoost uses oblivious decision trees, where each split is based on the same

feature for all the data points at a given level of the tree. This makes the prediction faster and more

robust to noise. [17].

In our experiment, we took 2 hyperparameters into consideration when doing fine-tuning. Here

shows the hyperparameter list and the fine-tuning result:

Parameters Description Value

iterations Number of iterations 50,100,500

learning_rate Learning rate in gradient descent 0.01, 0.1

 Fig.13 Tuning of CatBoost

After the fine-tuning, we found that {'iterations': 500, 'learning rate': 0.1} performs best.

Therefore, we applied this combination to the final model in the testing process.

3.4.9 XGBoost (not implemented in sklearn)

XGBoost (Extreme Gradient Boosting) is a powerful and scalable gradient boosting algorithm

that uses decision trees as base learners to make predictions which was invented by Tianqi Chen in

2014.

The principle of XGBoost can be explained in the following steps [18]:

1. Initialize the model with the mean value of the target variable.

2. Train a decision tree to predict the residuals of the previous model.

3. Add the new decision tree model to the previous model and update the predictions.

4. Repeat steps 2 and 3 until a specified number of trees (n_estimators) have been built, or until

the performance on the validation set stops improving.

5. Make predictions by summing the predictions of all the decision trees.

In our experiment, we took 2 hyperparameters into consideration when doing fine-tuning. Here

shows the hyperparameter list and the fine-tuning result:
Parameters Description Value

max_depth maximum depth of each decision tree 5, 7, None

https://catboost.ai/docs/concepts/python-usages-examples.html
https://catboost.ai/docs/concepts/python-usages-examples.html
https://dhavalthakur.medium.com/what-is-catboost-algorithm-step-by-step-tutorial-2c93aa566068
https://dhavalthakur.medium.com/what-is-catboost-algorithm-step-by-step-tutorial-2c93aa566068
https://dhavalthakur.medium.com/what-is-catboost-algorithm-step-by-step-tutorial-2c93aa566068

13

n_estimators the number of decision trees 200, 500

Fig.14 Tuning of XGBoost

By adjusting the maximum depth and number of estimators, we found that {'max_depth': None,

'n_estimators': 500} performs best. Therefore, we applied this combination to the final model in the

testing process.

4. Result

After getting the best settings for all 9 kinds of machine-learning models, we apply those models

to the testing set to compare their performance. Below shows a comparison table and confusion

matrixes of the 9 models.

Model Training

Time

Testing

Time

Accuracy Precision Recall F1-Score

(macro)

SVM 5.7801 2.2243 77.55% 0.7848 0.7179 0.7452

Logistic

Regression

7.4726 0.0015 71.82% 0.6632 0.6204 0.6299

K-NN 0.004 0.1600 69.15% 0.6773 0.6361 0.6488

Naïve Bayes 0.0159 0.0030 62.05% 0.5947 0.6162 0.5749

QDA 2.5069 0.0282 71.04% 0.7492 0.6049 0.6491

Random Forest 67.0917 0.4688 66.33% 0.7394 0.4719 0.4929

Multiple Layer

perceptron

39.6285 0.0159 76.73% 0.7455 0.7115 0.7261

CatBoost 43.3773 0.0633 72.53% 0.7706 0.6057 0.6369

XGBoost 64.0567 0.0705 72.45% 0.7421 0.6095 0.6424

14

From the results, we can see that SVM achieved the highest F1 score of 0.7452 and the highest

accuracy of 77.55%, followed closely by Multiple Layer Perceptron with an F1 score of 0.7261 and an

accuracy of 76.73%. On the other hand, the performance of Naïve Bayes and Random Forest seems to

be unacceptable, with F1 scores of merely 0.5749 and 0.4929 respectively. The rest 5 models also

achieved a relatively high F1 score around 0.63-0.64.

Overall, the results suggest that SVM and Multiple Layer Perceptron are the most promising

models for our music genre classification problem, as they achieved the highest accuracy and F1 scores.

In contrast, Naïve Bayes and Random Forest with the current hyperparameter settings may not be ideal

choices.

15

5. Insights and Reflection

5.1 Importance of feature selection and dimensionality reduction

 To verify our team conducted effective feature reduction, we further compared the performance

of the best models we obtained (SVM and Multiple Layer Perceptron) trained by features with Chi-

square Testing and PCA (totally 121 features), and without them (totally 874 features).

Model Number

of

features

Training

Time

Testing

Time

Accuracy Precisi

on

Recall F1-Score

(macro)

SVM(with feature

selection)

121 5.7801 2.2243 77.55% 0.7848 0.7179 0.7452

SVM(without feature

selection)

874 12.3244 4.0154 74.05% 0.7076 0.6751 0.6888

MLP(with feature

selection)

121 39.6285 0.0159 76.73% 0.7455 0.7115 0.7261

MLP(without feature

selection)

874 132.4131 0.0179 73.46% 0.6884 0.7006 0.6894

 From the above table, for both SVM and the Multiple Layer Perceptron, ignoring feature selection

and dimensionality reduction will not only lead to the degradation of the model performance, but also

greatly increase the training time and testing time, which verifies the feature selection and

dimensionality process in our project is essential.

5.2 Explanation of the poor performance of Naïve Bayes and Random Forest

 For Naïve Bayes, the most likely reason for its poor performance is that there is high dependence

in our features which is against the assumption of Naïve Bayes that all the features should be

independent from each other. It makes sense because most of the features were extracted by the same

music analyzation algorithms which may be highly dependent on each other. The result of PCA also

verifies this since we only needed 121 principal components to explain 90% variance of our data

(originally 774 features before PCA).

 For Random Forest, we were surprised at its poor performance since it is a widely accepted fact

that it should perform very well in multi-class classification problem. Hence, we made detailed testing

and found it suffered from the overfitting issue since there was a big gap between the training error and

the validation error.

16

 Fig.24 Identifying overfitting in Random Forest

Finally, we added some more restrictions such as “max_depth”, “min_samples_leaf”, and

“min_samples_split” to decrease the model complexity of the Random Forest. The table below

demonstrates that restricting the model complexity of the Random Forest can significantly upgrade the

model performance.

Model Training

Time

Testing

Time

Accuracy Precision Recall F1-Score

(macro)

Random Forest

(without restriction)

67.0917 0.4688 66.33% 0.7394 0.4719 0.4929

Random Forest (with

restriction)

26.3539 0.3492 69.43% 0.6897 0.6125 0.6151

6 Conclusion/Future Work

In conclusion, our project demonstrated that machine learning techniques, combined with

feature selection and dimensionality reduction, can effectively predict music genres. Among all the

models tested, SVM and Multiple Layer Perceptron achieved the highest accuracy, while Naïve

Bayes and Random Forest failed. We further verified the importance of feature selection and

dimensionality reduction techniques and tried to explain the reasons for the poor performance of

Naïve Bayes and Random Forest.

For future work, some technics like “SOMTE” could be used to make the dataset more

balanced to improve the performance of the models. Other feature selection and dimensionality

reduction methods could be explored to evaluate their effectiveness, and the dataset could be

diversified to include more music genres and a broader range of audio features.

Overall, the project provided valuable insights into the potential of machine learning

techniques for predicting music genres and highlighted the importance of algorithm selection,

feature selection, and dimensionality reduction in improving the task fulfillment. Future work in

this area could have significant practical applications in music recommendation, music retrieval,

and related fields.

17

7 References
[1] G. Tzanetakis and P. R. Cook, "Musical genre classification of audio signals," in IEEE Transactions

on Speech and Audio Processing, vol. 10, no. 5, pp. 293-302, July 2002, doi:

10.1109/TSA.2002.800560.

[2] R. Ghode, P. Navale, M. Jadhav, A. Chippa, and M. Bhandare, "Music Genre Classification and

Recommendation," International Journal of Scientific Research in Computer Science, Engineering and

Information Technology, vol. 7, no. 6, pp. 298-301, Nov.-Dec. 2021, doi: 10.32628/CSEIT217684.

[3] A. ELBİR Et Al., "Music Genre Classification and Recommendation by Using Machine Learning

Techniques," 2018 Innovations in Intelligent Systems and Applications Conference, ASYU 2018,

Adana, Turkey, 2018, pp. 1-5, doi: 10.1109/ASYU.2018.8554016.

[4] A. Elbir and N. Aydin, "Music Genre Classification and Music Recommendation by Using Deep

Learning," Electronics Letters, vol. 56, Mar. 2020, doi: 10.1049/el.2019.4202.

[5] K. S. Mounika, S. Deyaradevi, K. Swetha and V. Vanitha, "Music Genre Classification Using Deep

Learning," 2021 International Conference on Advancements in Electrical, Electronics, Communication,

Computing and Automation (ICAECA), Coimbatore, India, 2021, pp. 1-7, doi:

10.1109/ICAECA52838.2021.9675685.

[6] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, "FMA: A Dataset For Music Analysis,"

arXiv preprint arXiv:1612.01840, Dec. 2017, cs.SD. [Online]. Available:

https://arxiv.org/abs/1612.01840, doi: https://doi.org/10.48550/arXiv.1612.01840

[7] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, "Distributed Representations of Words

and Phrases and their Compositionality," arXiv preprint arXiv:1310.4546, Oct. 2013, cs.CL. [Online].

Available: https://arxiv.org/abs/1310.4546. doi: 10.48550/arXiv.1310.4546.

[8] P. F. Muhammad, R. Kusumaningrum, and A. Wibowo, "Sentiment Analysis Using Word2vec And

Long Short-Term Memory (LSTM) For Indonesian Hotel Reviews," Procedia Computer Science, vol.

179, pp. 728-735, 2021. doi: https://doi.org/10.1016/j.procs.2021.01.061.

[9] Scikit-learn, "GridSearchCV," in Scikit-learn: Machine Learning in Python (1.2.2). [Online].

Available: https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html. Accessed on: Apr.

17, 2023.

[10] S. Suthaharan, Machine Learning Models and Algorithms for Big Data Classification: Thinking

with Examples for Effective Learning, Integrated Series in Information Systems, 1st ed. New York,

NY, USA: Springer, 2015, pp. XIX, 359. doi: https://doi.org/10.1007/978-1-4899-7641-3.

[11] X. Su, X. Yan, and C.-L. Tsai, "Linear regression," WIREs Comput. Stat., vol. 4, no. 3, pp. 275-

294, 2012. doi: 10.1002/wics.1198.

[12] S. Sperandei, "Understanding logistic regression analysis," Biochem. Med. (Zagreb), vol. 24, no.

1, pp. 12-18, Feb. 2014. doi: 10.11613/BM.2014.003. PMID: 24627710; PMCID: PMC3936971.

[13] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, "KNN model-based approach in classification," in

On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, R. Meersman, Z.

Tari, and D. C. Schmidt, Eds. Berlin, Heidelberg: Springer, 2003, vol. 2888, pp. 624-631. doi:

10.1007/978-3-540-39964-3_62.

https://arxiv.org/abs/1612.01840,
https://doi.org/10.48550/arXiv.1612.01840
https://doi.org/10.1016/j.procs.2021.01.061
https://doi.org/10.1007/978-1-4899-7641-3

18

[14] G. Webb, "Naïve Bayes," in Encyclopedia of Machine Learning and Data Mining, C. Sammut and

G. I. Webb, Eds. MA: Springer US, 2017, pp. 1-2. doi: 10.1007/978-1-4899-7502-7_581-1.

[15] S. Srivastava, M. R. Gupta, and B. A. Frigyik, "Bayesian quadratic discriminant analysis," Journal

of Machine Learning Research, vol. 8, pp. 1277-1305, Jun. 2007. [Online]. Available:

http://www.jmlr.org/papers/volume8/srivastava07a/srivastava07a.pdf.

[16] M. W. Gardner and S. R. Dorling, "Artificial neural networks (the multilayer perceptron)—a

review of applications in the atmospheric sciences," Atmospheric Environment, vol. 32, no. 14, pp.

2627-2636, 1998. doi: 10.1016/S1352-2310(97)00447-0. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1352231097004470.

[17] J. T. Hancock and T. M. Khoshgoftaar, "CatBoost for big data: An interdisciplinary review,"

Journal of Big Data, vol. 7, no. 1, p. 94, Nov. 2020. doi: 10.1186/s40537-020-00369-8. [Online].

Available: https://doi.org/10.1186/s40537-020-00369-8.

[18] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," in Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2016,

pp. 785-794. doi: 10.1145/2939672.2939785.

http://www.jmlr.org/papers/volume8/srivastava07a/srivastava07a.pdf
https://www.sciencedirect.com/science/article/pii/S1352231097004470
https://doi.org/10.1186/s40537-020-00369-8

